Pearson

Mark Scheme (Results)

January 2018

Pearson Edexcel International GCSE
In Chemistry (4CH0) Paper 1C

Edexcel and BTEC Qualifications

Edexcel and BTEC qualifications are awarded by Pearson, the UK's largest awarding body. We provide a wide range of qualifications including academic, vocational, occupational and specific programmes for employers. For further information visit our qualifications websites at www.edexcel.com or www.btec.co.uk. Alternatively, you can get in touch with us using the details on our contact us page at www.edexcel.com/contactus.

Pearson: helping people progress, everywhere

Pearson aspires to be the world's leading learning company. Our aim is to help everyone progress in their lives through education. We believe in every kind of learning, for all kinds of people, wherever they are in the world. We've been involved in education for over 150 years, and by working across 70 countries, in 100 languages, we have built an international reputation for our commitment to high standards and raising achievement through innovation in education. Find out more about how we can help you and your students at: www. pearson.com/uk

January 2018
Publications Code 4CH0_1C_1801_MS
All the material in this publication is copyright
© Pearson Education Ltd 2018

General Marking Guidance

- All candidates must receive the same treatment. Examiners must mark the first candidate in exactly the same way as they mark the last.
- Mark schemes should be applied positively. Candidates must be rewarded for what they have shown they can do rather than penalised for omissions.
- Examiners should mark according to the mark scheme not according to their perception of where the grade boundaries may lie.
- There is no ceiling on achievement. All marks on the mark scheme should be used appropriately.
- All the marks on the mark scheme are designed to be awarded. Examiners should always award full marks if deserved, i.e. if the answer matches the mark scheme. Examiners should also be prepared to award zero marks if the candidate's response is not worthy of credit according to the mark scheme.
- Where some judgement is required, mark schemes will provide the principles by which marks will be awarded and exemplification may be limited.
- When examiners are in doubt regarding the application of the mark scheme to a candidate's response, the team leader must be consulted.
- Crossed out work should be marked UNLESS the candidate has replaced it with an alternative response.

Question number (a)	Si	Answer	Notes
(b)	N		Marks
(c)	0	ACCEPT 8	1
(d)	A (1)		1
(e)	D (7)		1

Total 5 marks

Question number	Answer			Notes	Marks
2 (a)				1 mark for each correct row	3
	Change	Starting state	Finishing state		
	ice to water				
	solid iodine to iodine vapour	Z	X		
	molten iron to solid iron	Y	Z		
	ethene to (poly)ethene	X	Z		
(b)	D (sublimation)				1

Total 4 marks

Question number	Answer	Notes	Marks
3 (a)	M1 (crystals) - get smaller M2 (water) - turns (from colourless to) purple	ACCEPT disappear IGNORE dissolve IGNORE reference to (incorrect) colours/loses colour IGNORE mass decreases ALLOW pink IGNORE goes cloudy ALLOW (water) turns to colour of crystals REJECT other incorrect observations, e.g. fizzing, crystals change colour, only once in (a)	2
(b)	C diffusion		1
(c)(i) (c)(ii)	(water would change colour/go purple) more quickly M1 particles/molecules/ions/they have more (kinetic) energy/are moving faster (in hot water) M2 particles/molecules/ions/they diffuse/spread more quickly	ALLOW change (in appearance) /it happens more quickly ALLOW (dissolves) more quickly IGNORE cloudy/incorrect colour ALLOW references to darker purple/colour with hot water ALLOW references to faster reaction IGNORE references to collisions ALLOW reverse argument in cold water If change is slower in (i) then ALLOW particles/molecules/ions have less (kinetic) energy/are moving slower ALLOW particles/molecules/ions/they dissolve more quickly ALLOW more particles dissolve ALLOW references to more frequent collisions between water molecules and crystals	1

Question number	Answer	Notes	Marks
4 (a)		M1 and M2 all points plotted correctly to nearest gridline Penalise 1 mark for each point plotted incorrectly M3 suitable curve of best fit drawn for points plotted Do not consider any extrapolation of curve for M3	3
(b)	M1 curve correctly extrapolated to cut y axis (at $10^{\circ} \mathrm{C}$) M2 correct reading to nearest gridline from curve drawn	typical answer in range 32-33	2
(c)	M1 correct reading to nearest gridline at $35^{\circ} \mathrm{C}$ from curve drawn M2 value from M1 divided by 2 and correctly evaluated	typical answer = 58	2

Total 7 marks

Question number	Answer	Notes	Marks
5 (a)	M1 heated	ALLOW boiled ALLOW raised to high temperature / temperature above $350{ }^{\circ} \mathrm{C}$	

Total 7 marks

Question number	Answer	Notes	Marks
6 (a)	M1 (X) - chlorine M2 (Y) - potassium hydroxide M3 (Z) - hydrochloric (acid)	ACCEPT Cl 2 IGNORE Cl ACCEPT KOH ACCEPT HCl In each case, if both name and formula given then mark name only	3
(b) (i)	$2 \mathrm{Na}+\mathrm{I}_{2} \rightarrow 2 \mathrm{NaI}$	ACCEPT multiples and halves IGNORE state symbols correct case/subscript required	1
(ii)	M1 add (dilute) nitric acid M2 add (aqueous) silver nitrate M3 yellow precipitate (forms)	ACCEPT HNO_{3} If no acid then M2 and M3 can be scored If incorrect acid or other incorrect reagent then M2 and M3 can be scored ACCEPT AgNO_{3} If more than two reagents added penalise extra incorrect reagent(s) ACCEPT usual alternatives to precipitate IGNORE cloudy IGNORE qualifiers such as pale/light/dark REJECT other observations e.g. fizzing M3 DEP on addition of silver nitrate/ AgNO_{3} IGNORE identity of precipitate If use more reactive halogen (solution) ALLOW M1 add chlorine/bromine (solution) M3 turns (reddish) brown OR M1 add chlorine/bromine (solution) M2 (followed by) starch M3 turns blue/black IGNORE references to electrolysis	3

Question number	Answer	Notes	Marks
7 (a)	M1 (Cu) (Fe) (S) $\frac{34.60}{63.5}$ $\frac{30.52}{56}$ $\frac{34.88}{32}$ M2 0.545 0.545 1.09 M3 (divide by the smallest number) 1 2 OR M1 Calculation of Mr of $\mathrm{CuFeS}_{2}=$ 183.5/184 M2 expression for percentage of each element e.g. $\mathrm{Cu}=63.5 \div$ 183.5×100 M3 evaluation to show these equal $34.60 \% \mathrm{Cu}, 30.52 \% \mathrm{Fe}$ and 34.88% S	Division by atomic numbers or other inappropriate numbers scores $0 / 3$ Fractions upside down scores 0/3 ACCEPT use of 64 for Cu With $63.5=\left(\begin{array}{lll}0.54488 & 0.5451 .09\end{array}\right)$ With $64=0.54060 .5451 .09$ ALLOW any number of sig figs greater than one, rounded correctly ALLOW ECF from minor error in M1 ALLOW M3 to score from 0.5:0.5:1 or other incorrect rounding in M2	3

\begin{tabular}{|c|c|c|c|}
\hline Question number \& Answer \& Notes \& Marks \\
\hline \begin{tabular}{l}
7 (b) (i) \\
(ii)
\end{tabular} \& (sulfur) gained oxygen
\[
\mathrm{CuS}+\mathrm{O}_{2} \rightarrow \mathrm{Cu}+\mathrm{SO}_{2}
\] \& \begin{tabular}{l}
ALLOW combined with oxygen ALLOW had oxygen added ALLOW gained \(\mathrm{O}^{\prime} \mathrm{O}_{2}\) IGNORE formed sulfur dioxide/ \(\mathrm{SO}_{2}\) IGNORE reacted/mixed with oxygen ACCEPT oxidation state/number increases \\
ACCEPT oxidation state/number changes from -2 to (+)4 IGNORE references to electron loss \\
ACCEPT multiples and halves
\end{tabular} \& 1

1

\hline | $7 \quad$ (c) (i) |
| :--- |
| (ii) |
| (iii) | \& | hydrogen (ion) / H^{+} |
| :--- |
| (blue/purple/neutral litmus (paper)) turns/goes red |
| M1 effervescence/bubbles/fizzing |
| M2 magnesium/solid/ribbon disappears | \& | ACCEPT hydronium (ion) / $\mathrm{H}_{3} \mathrm{O}^{+}$ If both name and formula given, both must be correct |
| :--- |
| ACCEPT gas given off/formed/produced IGNORE name of gas IGNORE hydrogen/ H_{2} |
| ACCEPT magnesium/solid/ribbon dissolves |
| ACCEPT magnesium/ solid/ribbon gets smaller |
| IGNORE mass decreases IGNORE reference to movement |
| IGNORE references to temperature change/heat evolved/exothermic |
| REJECT extra incorrect observations e.g. white flame | \& | 1 |
| :--- |
| 1 |
| 2 |

\hline
\end{tabular}

Total 9 marks

Question number	Answer	Notes	Marks
8 (a)		M1 32.5 M2 5.5 ALLOW M2 ECF from M1	2
	Temperature after in ${ }^{\circ} \mathrm{C}$ 32.5		
	Temperature before in ${ }^{\circ} \mathrm{C}$ (27.0)		
	Change in temperature in ${ }^{\circ} \mathrm{C}$		
(b) (i)	M1 EITHER	IGNORE volume of metal	3
	size/surface area (of metal)		
	OR		
	amount / number of moles (of metal)	IGNORE mass of metal	
	AND Any TWO from		
	M2 concentration of acid	ALLOW amount of acid	
	M3 volume of acid		
	M4 rate/time of stirring	ALLOW starting temperature	
(ii)	the more reactive the metal the greater the temperature rise	ACCEPT reverse argument	1
		IGNORE reactivity is proportional to temperature rise	
(iii)	no reaction (takes place)/ gold does not react (with hydrochloric acid)	IGNORE gold is (too) unreactive/not reactive enough	1

Total 7 marks

Question number	Answer	Notes	Marks
9 (a)	M1 strontium carbonate M2 strontium hydrogencarbonate	ACCEPT correct formulae	2
(b) (i)	Any TWO from: M1 (could be) caesium (compound) as also gives a blue flame M2 (could be) a carbonate as also turns yellow with methyl orange M3 (could be) hydrogencarbonate as also turns yellow with methyl orange	In M1 M2 M3 REJECT if incorrect reason given ALLOW 1 mark if two correct ions identified without reasons e.g. could be caesium and could be a carbonate ALLOW 1 mark if two different correct observations given without naming the ions e.g. other (substances/ions) give blue flame and turn yellow with methyl orange	2
(ii)	add hydrochloric acid	ALLOW HCl REJECT extra tests/reagents	1

Question number	Answer	Notes	Marks		
9 (c)	M1 add magnesium chloride (solution)	REJECT extra reagents e.g. HCl			
M2 carbonate ions give a (white)					
precipitate					
M3 no change with hydrogencarbonate					
ions				\quad	ALLOW no (white) precipitate forms
:---					
M2 and M3 DEP on mention of					
magnesium chloride in M1	\quad				
:---					

Question number	Answer	Notes	Marks
10 (a)	pipette / burette		1
(b) (i) (ii)	ANY TWO from M1 did not stir the mixture M2 added less than $5 \mathrm{~cm}^{3}$ (extra) of acid M3 did not wait until highest temperature reached Any value between 32 and $34\left({ }^{\circ} \mathrm{C}\right)$ inclusive	ALLOW less/slower stirring ALLOW added less than $20 \mathrm{~cm}^{3}$ (total) acid ALLOW not enough acid added ALLOW read thermometer too soon ALLOW range between 32 and 34 IGNORE units	1 1 1
(c)	$\begin{aligned} & \text { M1 } \Delta T=19.0\left({ }^{\circ} \mathrm{C}\right) \\ & \text { M2 } m=50.0(\mathrm{~g}) \\ & \text { M3 } Q=3970(\mathrm{~J}) \end{aligned}$	ALLOW \{35.0 - 16.0\} if not evaluated ALLOW $\{25.0+25.0(0)\}$ if not evaluated ACCEPT 3971 ACCEPT 4000 IGNORE any sign M3 ECF from M1 and for use of $m=25$ ALLOW 3.971/3.97/4.(0)kJ Correct answer with no working scores 3 marks	$\begin{aligned} & 1 \\ & 1 \\ & 1 \end{aligned}$

\begin{tabular}{|c|c|c|c|}
\hline Question number \& Answer \& Notes \& Marks \\
\hline \begin{tabular}{l}
11 (a) (i) \\
(ii)
\end{tabular} \& \begin{tabular}{l}
delocalised electrons can flow (through structure when voltage/pd is applied) \\
M1 the layers of (cat)ions \\
M2 can slide/slip over one another
\end{tabular} \& \begin{tabular}{l}
ALLOW sea of electrons \\
IGNORE free electrons \\
ACCEPT can move \\
ACCEPT are mobile \\
IGNORE carry charge \\
REJECT any reference to ions moving \\
ALLOW rows/sheets/OWTTE for layers ALLOW atoms for ions \\
REJECT molecules/protons/electrons/nuclei IGNORE particles \\
ALLOW OWTTE e.g. roll/flow \\
M2 DEP on mention of layers or equivalent OR mention of (cat)ions/atom \\
Do not award M2 if molecules/protons/electrons/nuclei in place of (cat)ions/atoms \\
If reference to ionic bonding / covalent bonding / molecules / intermolecular forces, M1 and M2 cannot be scored
\end{tabular} \& 1

2

\hline (b) \& | TiCl_{4} |
| :--- |
| M1 simple molecular (structure) |
| M2 weak intermolecular forces (of attraction)/ weak forces (of attraction) between molecules |
| TiO_{2} |
| M3 giant (covalent structure) |
| M4 strong (covalent) bonds |
| M5 Little/less energy required to overcome the forces (in TiCl_{4}) |
| AND |
| large amount of/more energy required to break the (covalent) bonds (in TiO_{2}) | \& | ALLOW simple covalent |
| :--- |
| ACCEPT weak dispersion forces/van der Waals forces/temporary dipole-induced dipole forces ALLOW bonds for forces |
| REJECT if mention of IMF/ions |
| REJECT any reference to covalent bonds broken in TiCl_{4} ALLOW intermolecular bonds /bonds between molecules |
| IGNORE molecules more easily separated / easier to break forces |
| REJECT any reference to IMF broken | \& 5

\hline
\end{tabular}

Question number	Answer	Notes	Marks	
11 (c) (i)	$\mathrm{TiO}_{2}+\mathrm{C}+2 \mathrm{Cl}_{2} \rightarrow \mathrm{TiCl}_{4}+\mathrm{CO}_{2}$	ACCEPT halves and multiples		
		$\mathrm{M1}$ all formulae correct		
	(ii)	$\mathrm{TiCl}_{4}+2 \mathrm{Mg} \rightarrow \mathrm{Ti}+2 \mathrm{MgCl}_{2}$	ACCEPT halves and multiples	
			1	

\begin{tabular}{|c|c|c|c|}
\hline Question number \& Answer \& Notes \& Marks \\
\hline \begin{tabular}{l}
12 (a) (i) \\
(ii)
\end{tabular} \& \begin{tabular}{l}
low AND because (forward) reaction is exothermic / (forward) reaction releases heat (energy) \\
high AND because there are fewer moles/molecules (of gas) on the RHS/products side/methanol side
\end{tabular} \& \begin{tabular}{l}
ACCEPT (equilibrium) shifts in the exothermic direction \\
IGNORE \(\Delta \mathrm{H}\) is negative \(/=-91\) \\
ALLOW backwards/reverse reaction is endothermic \\
IGNORE references to Le Chatelier's principle e.g. a decrease in temperature favours the reaction that produces heat/tries to decrease the temperature \\
IGNORE references to rate of reaction \\
ACCEPT (equilibrium) shifts to side with fewer moles/molecules (of gas) ACCEPT there are 4 moles/molecules (of gas) on the LHS but only 2 mole/molecule (of gas) on the RHS \\
ALLOW there are more moles/molecules (of gas) on the LHS \\
IGNORE references to Le Chatelier's principle e.g. an increase in pressure favours the reaction that tries to decrease in pressure
\end{tabular} \& 1 \\
\hline (b) \& (the catalyst/it) increases both rates equally \& \& 1 \\
\hline \begin{tabular}{l}
(c) \\
(i) \\
(ii) \\
(iii)
\end{tabular} \& \begin{tabular}{l}
 \\
M1 profile curve completed with \(\mathrm{CH}_{3} \mathrm{OH}\) /products below reactants \\
M2 vertical line with arrow pointing downwards labelled \(\Delta H\) / enthalpy change / -91(kJ/mol) \\
vertical arrow line drawn from level of reactants to top of curve and labelled \(E\) \\
no effect
\end{tabular} \& \begin{tabular}{l}
ALLOW double headed arrow line ALLOW vertical line with no arrowhead REJECT single arrow head pointing up \\
ACCEPT double headed arrow line \\
REJECT arrow pointing downwards
\end{tabular} \& 2

1
1

\hline
\end{tabular}

Total 7 marks

Question number	Answer	Notes	Marks
13 (a)	M1 $n\left(\mathrm{CaCO}_{3}\right)=2.0 \times 10^{5} \mathrm{OR}$ 200000 (mol) M2 $m(\mathrm{CaO})=11.2$ M3 tonnes OR M1 $100 \rightarrow 56$ M2 $20 \rightarrow 11.2$ M3 tonnes	ACCEPT calculations in mega moles M2 ECF from M1 ACCEPT $1.12 \times 10^{7} \mathrm{~g}$ ACCEPT $1.12 \times 10^{4} \mathrm{~kg}$ M2 ECF from M1 ACCEPT $1.12 \times 10^{7} \mathrm{~g}$ ACCEPT $1.12 \times 10^{4} \mathrm{~kg}$ M3 DEP M2 being awarded Correct answer including units with no working scores 3 marks	1 1 1
(b)	calcium hydroxide		1
(c) (i) (ii)	M1 $0.025(0) \times 0.5(00)$ M2 0.0125 (mol) $\mathrm{M} 1 \mathrm{n}\left[\mathrm{Ca}(\mathrm{OH})_{2}\right]=0.0125 \div 2 \mathrm{OR}$ 0.00625 (mol) M2 mass of $\mathrm{Ca}(\mathrm{OH})_{2}=0.463(\mathrm{~g})$ OR M1 answer to M2 from (i) divided by 2 M2 M1 $\times 74$ evaluated correctly	ACCEPT 12.5 for 1 mark ACCEPT 0.4625 and 0.46 ALLOW 1 mark for 0.925 ALLOW 1 mark for 1.85	1 1 1 1
(d)	M1 $\mathrm{Ca}(\mathrm{OH})_{2}$ / slaked lime / limewater / the solution reacts with CO_{2} M2 to form solid calcium carbonate/ CaCO_{3}	ACCEPT correct chemical or word equation REJECT any other gas ACCEPT to form insoluble calcium carbonate/ CaCO_{3} ALLOW to form the (white) precipitate calcium carbonate/ CaCO_{3} ACCEPT any indication in an equation that the CaCO_{3} is formed as a solid e.g. state symbol	1 1

\begin{tabular}{|c|c|c|c|}
\hline Question number \& Answer \& Notes \& Marks \\
\hline 14 (a) \& \(B\) (Q and U) \& \& 1 \\
\hline (b) \& C (S and T) \& \& 1 \\
\hline (c) \& D (V) \& \& 1 \\
\hline (d) \& A (R and V) \& \& 1 \\
\hline \begin{tabular}{l}
(e) \\
(i) \\
(ii)
\end{tabular} \& UV (light/radiation) \& \begin{tabular}{l}
IGNORE any reference to high temperature IGNORE any reference to a catalyst \\
ACCEPT Br in any position ACCEPT multiple substitutions
\end{tabular} \& 1

1

\hline
\end{tabular}

Total 6 marks

Total 8 marks

